9.2 CALCULUS WITH PARAMETRIC CURVES

EXAMPLE A Find an equation of the tangent line to the parametric curve

$$
x=2 \sin 2 t \quad y=2 \sin t
$$

at the point $(\sqrt{3}, 1)$. Where does this curve have horizontal or vertical tangents?
SOLUTION At the point with parameter value t, the slope is

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{d}{d t}(2 \sin t)}{\frac{d}{d t}(2 \sin 2 t)} \\
& =\frac{2 \cos t}{2(\cos 2 t)(2)}=\frac{\cos t}{2 \cos 2 t}
\end{aligned}
$$

The point $(\sqrt{3}, 1)$ corresponds to the parameter value $t=\pi / 6$, so the slope of the tangent at that point is

$$
\left.\frac{d y}{d x}\right|_{t=\pi / 6}=\frac{\cos (\pi / 6)}{2 \cos (\pi / 3)}=\frac{\sqrt{3} / 2}{2\left(\frac{1}{2}\right)}=\frac{\sqrt{3}}{2}
$$

An equation of the tangent line is therefore

$$
y-1=\frac{\sqrt{3}}{2}(x-\sqrt{3}) \quad \text { or } \quad y=\frac{\sqrt{3}}{2} x-\frac{1}{2}
$$

Figure 1 shows the curve and its tangent line.
The tangent line is horizontal when $d y / d x=0$, which occurs when $\cos t=0$ (and $\cos 2 t \neq 0$), that is, when $t=\pi / 2$ or $3 \pi / 2$. (Note that the entire curve is given by $0 \leqslant t \leqslant 2 \pi$.) Thus, the curve has horizontal tangents at the points $(0,2)$ and $(0,-2)$, which we could have guessed from Figure 1.

The tangent is vertical when $d x / d t=4 \cos 2 t=0$ (and $\cos t \neq 0$), that is, when $t=\pi / 4,3 \pi / 4,5 \pi / 4$, or $7 \pi / 4$. The corresponding four points on the curve are $(\pm 2, \pm \sqrt{2})$. If we look again at Figure 1, we see that our answer appears to be reasonable.

